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1. Introduction

The perturbative quantization of the nonlinear sigma model in D = 4 requires a strategy

for the definition of the path-integral over the Haar measure of non-linearly realized groups.

It has been recently pointed out [1]- [3] that such a definition can be implemented

through the local functional equation which expresses the invariance of the Haar measure

under local left group multiplication. The subtraction procedure is required to be symmet-

ric, thus preserving the validity of the local functional equation to all orders in the loop

expansion [3].

The local functional equation fixes the Green functions of the quantized pion fields

parameterizing the SU(2) group element (over which the path-integral is performed) in

terms of those of the SU(2) flat connection and the order parameter (ancestor composite

operators). This goes under the name of hierarchy principle [1]. Moreover there is only a

finite number of divergent ancestor amplitudes at every loop order (weak power-counting

theorem [2, 3]).
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The local solutions of the linearized functional equation (relevant for the classification

of the allowed finite renormalizations order by order in the loop expansion) were obtained

in [2]. In the one-loop approximation these results have been shown [2] to reproduce those

of ref. [4].

In this paper we show how to explicitly solve the local functional equation by re-

constructing the full Green functions of the quantized fields once the relevant ancestor

amplitudes are known, to every order in the loop expansion.

In the one-loop approximation (linearized functional equation) this is achieved by

group-theoretical methods allowing to introduce a suitable set of invariant variables in

one-to-one correspondence with the external sources Jaµ (coupled in the classical action to

the flat connection) and K0 (coupled to the order parameter). These invariant variables

give rise to the whole dependence of the one-loop vertex functional on the quantized fields.

As a special case one can apply this algorithm to the space of local functionals. We

then show that the results of ref. [2] are recovered.

At higher orders one has to solve an inhomogeneous equation. For that purpose we

make use of algebraic BRST techniques originally developed in the context of gauge theo-

ries [5]–[9] in order to invert the linearized operator in the relevant sector at ghost number

one.

The main result is that starting from two loops on the dependence of the vertex func-

tional on the quantized fields φa is two-fold: the n-th loop ancestor amplitudes induce the

dependence on the φ’s through the invariant variables solution of the linearized functional

equation (implicit dependence). The lower-order contributions (giving rise to the inhomo-

geneous term as a consequence of the bilinearity of the functional equation) account for

the explicit dependence of the n-th order vertex functional on the quantized fields.

We stress that in this approach the functional equation is recursively solved order by

order in the loop expansion. This allows to obtain the full dependence of the vertex func-

tional on the quantized fields (which is uniquely determined once the ancestor amplitudes

are known) to all loop orders.

This algorithm can be applied to many problems arising in the quantization of non-

renormalizable theories based on the hierarchy principle. We just mention two of them

here. The technique discussed in this paper can be applied to higher loops Chiral Pertur-

bation theory [10] in order to determine the full dependence of the vertex functional on the

pion fields (including those terms which are on-shell vanishing).

Moreover this method is expected to provide a very useful tool in the program of the

consistent quantization of the Stueckelberg model [11]–[13] for massive non-abelian gauge

bosons.

The paper is organized as follows. In section 2 we briefly review the subtraction

procedure based on the hierarchy principle in the flat connection formalism. In section 3

we solve the local functional equation in the one-loop approximation in full generality.

We do not impose any locality restrictions on the space of the solutions. In section 4 we

discuss some one-loop examples. We show that by applying the algorithm of section 3 to

the space of local functionals the results of ref. [2] are recovered. We also solve explicitly

the hierarchy for the four-point pion amplitudes (one loop). In section 5 the technique
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for the determination of the higher order solution is developed. In section 6 we apply this

technique on some examples at the two loop level. In particular we obtain the solution of

the hierarchy for the four point pion functions at two loops. In section 7 we comment on

the possible finite renormalizations which are allowed from a mathematical point of view

by the weak power-counting, order by order in the loop expansion, and we show that they

can be interpreted as a redefinition of the external sources Jaµ and K0 by finite quantum

corrections. Conclusions are finally given in section 8.

2. The flat connection formalism

In the flat connection formalism [1] the pion fields are embedded into the SU(2) flat con-

nection

Fµ = iΩ∂µΩ† =
1

2
Faµτa . (2.1)

In the above equation τa are the Pauli matrices and Ω denotes the SU(2) group element.

Ω is parameterized in terms of the pion fields φa as follows:

Ω = 1
vD

(φ0 + iτaφa) , Ω†Ω = 1 , det Ω = 1 ,

φ2
0 + φ2

a = v2
D . (2.2)

vD is the D-dimensional mass scale

vD = vD/2−1

and v has mass dimension one.

The D-dimensional action of the nonlinear sigma model is written in the presence of

an external vector source Jaµ
1 and of a scalar source K0 coupled to the solution of the

nonlinear sigma model constraint φ0:

Γ(0) =

∫
dDx

(v2
D

8
(Faµ − Jaµ)2 + K0φ0

)
. (2.3)

The invariance of the Haar measure in the path-integral under the local gauge trans-

formations

Ω′ = UΩ ,

F ′
µ = UFµU † + iU∂µU † , (2.4)

where U is an element of SU(2) allows to derive the following local functional equation for

the 1-PI vertex functional Γ [1]

(
− ∂µ

δΓ

δJaµ
+ εabcJcµ

δΓ

δJbµ
+

1

2
K0φa +

1

2

δΓ

δK0

δΓ

δφa
+

1

2
εabcφc

δΓ

δφb

)
(x) = 0 . (2.5)

1In this paper we denote by Jaµ the background connection. The classical action of ref. [1] differs by a

term
v2

D

8
J2

aµ w.r.t. the action in eq. (2.3). The source coupled to the flat connection is given by −

v2

D

4
Jaµ.

Moreover we set the gauge coupling constant g to 1.
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Moreover one requires that the vacuum expectation value of the order parameter is fixed

by the condition

δΓ

δK0(x)

∣∣∣∣
~φ=K0=Jaµ=0

= vD . (2.6)

A weak power-counting theorem [2] exists for the loop-wise perturbative expansion.

Accordingly at any given loop order the number of divergent ancestor amplitudes (i.e. those

only involving the insertion of the ancestor composite operators) is finite. On the contrary,

already at one loop level there is an infinite number of divergent 1-PI amplitudes involving

the φa fields (descendant amplitudes). The latter can be fixed in terms of the ancestor

ones by recursively differentiating the local functional equation (2.5).

3. One-loop solution

In the one-loop approximation eq. (2.5) becomes

Sa(Γ
(1)) =

(
− ∂µ

δΓ(1)

δJaµ
+ εabcJcµ

δΓ(1)

δJbµ
+

1

2

δΓ(0)

δK0

δΓ(1)

δφa
+

1

2

δΓ(1)

δK0

δΓ(0)

δφa
(3.1)

+
1

2
εabcφc

δΓ(1)

δφb

)
(x) = 0 .

In order to solve the above equation we construct invariant variables in one-to-one corre-

spondence with the external sources. For that purpose we remark that the combination

K0 =
v2
DK0

φ0
− φa

δS0

δφa
(3.2)

with

S0 =
v2
D

8

∫
dDx

(
Faµ − Jaµ

)2
(3.3)

is an invariant [2]. Moreover the transformation K0 → K0 is invertible.

On the other hand eq. (3.1) implies that Jaµ transforms as a background connection.

The transformation properties of φa implement the non-linearly realized SU(2) local

transformation in eq. (2.4). Hence Faµ transforms as a gauge connection and therefore the

combination

Iµ = Iaµ
τa

2
= Fµ − Jµ (3.4)

transforms in the adjoint representation (being the difference of two connections):

I ′µ = UIµU † . (3.5)

As a consequence the conjugate of Iµ w.r.t. Ω

jµ = jaµ
τa

2
= Ω†IµΩ (3.6)
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is an invariant under the transformations in eqs. (2.4) and (3.5).

By direct computation one finds that jaµ in eq. (3.6) is given by

v2
D jaµ = v2

DIaµ − 2φ2
bIaµ + 2φbIbµφa + 2φ0εabcφbIcµ

≡ v2
D RbaIbµ . (3.7)

The matrix Rba in the above equation is an element of the adjoint representation of

the SU(2) group. Hence the transformation Jaµ → jaµ is invertible.

The linearized functional equation (3.1) has a very simple form in the variables

{φa,K0, jaµ}. In fact, by taking into account the invariance of K0 and jaµ under Sa,

eq. (3.1) reduces to

Θab
δΓ(1)[φa,K0, jaµ]

δφb
= 0 , (3.8)

where the matrix Θab gives the variation of φb:

Θab =
1

2
φ0δab +

1

2
εabcφc . (3.9)

Θab is invertible as a consequence of the nonlinear constraint in the second line of eq. (2.2)

and thus eq. (3.8) is equivalent to

δΓ(1)[φa,K0, jaµ]

δφb
= 0 . (3.10)

That means that the only dependence of the symmetric vertex functional Γ(1) on the pion

fields is through the variables K0 and jaµ.

This in turn allows to integrate the linearized functional equation (3.1). For that

purpose one has to replace in the ancestor amplitudes 1-PI functional the source K0 with
1

vD
K0 and Jaµ with −jaµ. The normalization of K0 and jaµ is fixed by the boundary

conditions

K0|~φ=0 = vDK0

−jaµ|~φ=0
= Jaµ . (3.11)

By eq. (3.10) this algorithm gives rise to the full dependence on the pion fields at the

one loop level. Thus we can state the following Proposition:

Proposition 1. Given the ancestor amplitudes 1-PI functional A(1)[K0, Jaµ] the solution

of the linearized local functional equation (3.1) is obtained through the replacement rule

Γ(1)[φa,K0, Jaµ] = A(1)[K0, Jaµ]
∣∣∣
K0→

1
vD

K0,Jaµ→−jaµ

(3.12)

where in the r.h.s. of the above equation K0 is given by eq. (3.2) and jaµ by eq. (3.7).

In view of this result we say that Γ(1) depends on the φ’s only implicitly (i.e. through

K0 and jaµ). This terminology will prove convenient when studying the dependence of the

vertex functional on the φ’s at higher orders.

We stress that no restriction to the space of local functionals is used in the above

derivation. Eq. (3.12) thus provides the full set of Green functions involving at least one

pion in terms of the ancestor amplitudes. This solves the hierarchy at the one loop level.
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4. One-loop examples

When restricted to the local (in the sense of formal power series) functionals, the prescrip-

tion in eq. (3.12) gives back the results of [2]. This follows from the uniqueness of the

hierarchy solution once the ancestor amplitudes are fixed.

As an example we derive the local invariants I1, . . . ,I7 parameterizing the one-loop

divergences of the nonlinear sigma model in D = 4 (see appendix C) by performing the

substitution K0 → 1
vD

K0 , Jaµ → −jaµ in the relevant ancestor monomials

∫
∂µJaν∂µJν

a ,
∫

∂Ja∂Ja ,
∫

εabc∂µJaνJ
µ
b Jν

c ,
∫

K2
0 ,

∫
K0J

2 ,
∫

(J2)2 ,
∫

JaµJ
µ
b JaνJν

b . (4.1)

The monomials in the second line of the above equation do not contain derivatives. By

using the SU(2) constraint

RbaRca = δbc (4.2)

we get

j2
aµ = I2

aµ , jaµj
µ
b jaνjν

b = IaµI
µ
b IaνIν

b . (4.3)

Therefore
∫

dDxK2
0 →

1

v2
D

∫
dDxK

2
0 =

1

v2
D

I4 ,

∫
dDxK0J

2 →
1

vD

∫
dDxK0j

2 =
1

vD
I5 ,

∫
dDx (J2)2 →

∫
dDx (j2)2 = I6 ,

∫
dDxJaµJ

µ
b JbνJ

ν
b →

∫
dDx jaµj

µ
b jbνjν

b = I7 . (4.4)

In order to establish the matching for the ancestor monomials involving derivatives in

the first line of eq. (4.1), we notice that the flat connection Faµ can be computed in terms

of Rba as well (since Rba belongs to the adjoint representation of the SU(2) group). In fact

one finds

iRbc∂µR†
ca = iRbc∂µRac = (Tc)baFcµ (4.5)

where (Tc)ba = iεcab are the generators of the adjoint representation satisfying the commu-

tation relation

[Ta, Tb] = iεabcTc . (4.6)

Eq. (4.5) can be checked as follows. We set

Ra ≡ Ω†τaΩ = τbRab

Rab = 1
2Tr

(
τbΩ

†τaΩ
)

. (4.7)
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By using the following identities

Tr (τaFµτb) = Tr

(
Ω†τaFµτbΩ

)

= iTr

(
Ω†τaΩ∂µΩ†τbΩ

)

= iTr

(
Ω†τaΩ∂µ

[
Ω†τbΩ

])
− iTr

(
Ω†τaΩΩ†τb∂µΩ

)

= iTr

(
Ω†τaΩ∂µ

[
Ω†τbΩ

])
+ iTr

(
τaΩΩ†τbΩ∂µΩ†

)
(4.8)

we find

Tr (τaFµτb) − Tr (τbFµτa) = iTr

(
Ω†τaΩ∂µ

[
Ω†τbΩ

])
(4.9)

which gives directly eq. (4.5):

−iεabcFcµ = iRac∂µRbc = −iRbc∂µRac . (4.10)

By repeated application of eq. (4.2) and eq. (4.5) we then get
∫

dDx ∂µJaν∂µJν
a →

∫
dDx ∂µjaν∂µjν

a =

∫
dDx ∂µ

(
RbaIνb

)
∂µ

(
RcaI

ν
c

)
(4.11)

=

∫
dDx (Dµ[F ]Iν)a(D

µ[F ]Iν)a = I1 ,

where Dµ[F ] is the covariant derivative w.r.t. Faµ:

(Dµ[F ]Iν)a = ∂µIaν + εabcFbµIcν . (4.12)

In a similar way we get
∫

dDx ∂Ja∂Ja →

∫
dDx ∂ja∂ja =

∫
dDx (Dµ[F ]Iµ)a(Dν [F ]Iν)a = I2 .

(4.13)

Moreover
∫

dDx εabc∂µJaνJ
µ
b Jν

c → −

∫
dDx εabc∂µjaνj

µ
b jν

c (4.14)

= −

∫
dDx εabc

(
∂µRqaIqνRpbI

µ
p RrcI

ν
r + Rqa∂µIqνRpbI

µ
p RrcI

ν
r

)
.

By noticing that

εabcRqaRpbRrc = εqpr (4.15)

and by using eqs. (4.2) and (4.5) into eq. (4.14) we finally get

−

∫
dDx εabc∂µjaνj

µ
b jν

c = −

∫
dDx εabc(Dµ[F ]Iν)aI

µ
b Iν

c = −I3 . (4.16)

As we have mentioned several times, the algorithm for solving the hierarchy based

on Proposition 1 can be applied in order to derive the full Green functions involving at

– 7 –
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least one pion field in terms of the ancestor amplitudes. As an example, we obtain here

the full one-loop four point pion amplitude in terms of the relevant ancestor amplitudes

Γ
(1)
JJ ,Γ

(1)
JJJ ,Γ

(1)
JJJJ ,Γ

(1)
K0K0

and Γ
(1)
K0JJ . For that purpose one has to perform the substitution

Jaµ → −jaµ and K0 → 1
vD

K0 in the relevant part of the ancestor functional

A(1)[K0, Jaµ] =
1

2

∫
Γ

(1)
Jaµ(x)Jbν(y)Jaµ(x)Jbν(y) +

+
1

3!

∫
Γ

(1)
Jaµ(x)Jbν(y)Jcρ(z)Jaµ(x)Jbν(y)Jcρ(z)

+
1

4!

∫
Γ

(1)
Jaµ(x)Jbν(y)Jcρ(z)Jdσ(w)Jaµ(x)Jbν(y)Jcρ(z)Jcσ(w)

+
1

2

∫
Γ

(1)
Jaµ(x)Jbν(y)K0(z)Jaµ(x)Jbν(y)K0(z)

+
1

2

∫
Γ

(1)
K0(x)K0(y)K0(x)K0(y) + . . . (4.17)

by keeping all terms contributing up to four pion fields. This amounts to truncate the

expansion of K0 up to two φ’s and the expansion of jaµ up to three φ’s:

K0 =
1

vD
φa¤φa + . . . ,

jaµ =
2

vD
∂µφa −

2

v2
D

εabc∂µφbφc +
1

v3
D

(
− φ2

b∂µφa + 2φb∂µφbφa

)
+ . . . (4.18)

Then one gets

Γ(1)[φφφφ] =
2

v4
D

∫
Γ

(1)
Jaµ(x)Jbν(y)

(
∂µφa(x)(−φ2

c(y)∂νφb(y) + 2φc(y)∂νφc(y)φb(y))

+ εapqεbrs∂µφp(x)φq(x)∂νφr(y)φs(y)
)

+
4

v4
D

∫
Γ

(1)
Jaµ(x)Jbν(y)Jcρ(z)εapq∂µφp(x)φq(x)∂νφb(y)∂ρφc(z)

+
2

3v4
D

∫
Γ

(1)
Jaµ(x)Jbν(y)Jcρ(z)Jdσ(w)∂µφa(x)∂νφb(y)∂ρφc(z)∂σφd(w)

+
2

v3
D

∫
Γ

(1)
Jaµ(x)Jbν(y)K0(z)∂µφa(x)∂νφb(y)(φc¤φc)(z)

+
1

2v2
D

∫
Γ

(1)
K0(x)K0(y)(φa¤φa)(x)(φb¤φb)(y) . (4.19)

5. Higher orders

At higher orders the functional equation (2.5) yields an inhomogeneous equation for Γ(n),

n > 1:

Sa(Γ
(n)) = −

1

2

n−1∑

j=1

δΓ(j)

δK0

δΓ(n−j)

δφa
. (5.1)
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In order to recursively integrate eq. (5.1) order by order in the loop expansion it is

convenient to introduce a BRST formulation for the linearized functional operator Sa. For

that purpose we define the BRST differential [2]

s =

∫
dDxωaSa

where ωa are classical anticommuting local parameters. The variables K0 and jaµ are

s-invariant while

sφa =
1

2
φ0ωa +

1

2
εabcφbωc ≡ Θabωb , sωa = −

1

2
εabcωbωc . (5.2)

The BRST transformation of ωa is dictated by nilpotency. ωa have ghost number one,

while all the remaining variables have ghost number zero. In view of the fact that there

are no variables with negative ghost number and that the vertex functional Γ has ghost

number zero, Γ cannot depend on ωa.

The introduction of a BRST differential allows to make use of the technique of the

Slavnov-Taylor (ST) parameterization of the effective action [7]–[9] (originally developed

in order to restore the ST identities for power-counting renormalizable gauge theories in

the absence of a symmetric regularization) in order to solve the local functional equation

at orders ≥ 1.

For that purpose we remark that, since the matrix Θab in eq. (5.2) is invertible, we

can perform a further change of variables by setting

ωa = Θabωb . (5.3)

The inverse matrix Θ−1
ca is given by

Θ−1
ca =

2φ0

v2
D

δca +
2

v2
Dφ0

φcφa −
2

v2
D

εcpaφp . (5.4)

The action of s on the variables {K0, jaµ, φa, ωa} is finally given by

sK0 = sjaµ = 0 ,

sφa = ωa , sωa = 0 , (5.5)

i.e. s has been cohomologically trivialized: (φa, ωa) form a BRST doublet [14]–[16], while

K0 and jaµ are invariant.

We are now in a position to recursively solve the local functional equation at higher

orders in perturbation theory. By using the BRST differential s eq. (5.1) reads

sΓ(n) = ∆(n) ≡ −
1

2

n−1∑

j=1

∫
dDxωa

δΓ(j)

δK0(x)

δΓ(n−j)

δφa(x)
, (5.6)

where ∆(n) depends only on known lower order terms. Nilpotency of s implies that ∆(n)

is invariant:

s∆(n) = 0 . (5.7)

– 9 –
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This consistency condition can be checked to hold as a consequence of the fulfillment

of the functional equation up to order n − 1, as shown in appendix A.

By using eq. (5.5) into eq. (5.6) we find

∫
dDxωa

δΓ(n)

δφa
= ∆(n)[ωa, φa,K0, jaµ] . (5.8)

We remark that ∆(n) is linear in ωa. By differentiating eq. (5.8) and by setting ωa = 0 we

get

δΓ(n)

δφa(x)
=

δ∆(n)

δωa(x)
(5.9)

which fixes the explicit dependence of the symmetric vertex functional Γ(n) on φa(x) (Γ(n)

depends on φ also implicitly through the invariant variables jaµ and K0). By successive

differentiation of eq. (5.9) we obtain

Γ
(n)
φa1 ...φamζb1

...ζbn
= ∆

(n)
ωa1φa2 ...φamζb1

...ζbn

=
1

m!

∑

σ∈Sm

∆
(n)
ωaσ(1)

φaσ(2)
...φaσ(m)

ζb1
...ζbn

(5.10)

where ζ is a collective notation standing for jaµ and K0.

The equality in the second line of the above equation is a consequence of the Bose

statistics of the φ’s. We point out that eq. (5.10) imposes a consistency condition on ∆(n),

i.e.

∆
(n)
ωa1φa2 ...φamζb1

...ζbn
=

1

m!

∑

σ∈Sm

∆
(n)
ωaσ(1)

φaσ(2)
...φaσ(m)

ζb1
...ζbn

. (5.11)

This condition holds as a consequence of eq. (5.7), as is proven in appendix B.

Eq. (5.9) shows that at order n ≥ 2 the vertex functional exhibits a further dependence

on the φ’s (in addition to the implicit one through the variables K0 and jaµ). We refer to it

as the explicit dependence of Γ(n) on φa. It is a remarkable fact that this latter dependence

on the pion fields comes from amplitudes involving the pion field of lower order strictly. In

particular, they do not affect the n-th loop ancestor amplitudes.

In order to recover the full n-th loop vertex functional one also needs to take into

account the implicit dependence on the pion fields through K0 and jaµ. In fact we can

state the following

Proposition 2. Given the functional A(n)[K0, Jaµ] collecting the n-th order ancestor

amplitudes, n ≥ 2, the full n-th loop vertex functional is given by

Γ(n)[φa,K0, Jaµ] = A(n)[K0, Jaµ]
∣∣∣
K0→

1
vD

K0,Jaµ→−jaµ

+

∫
dDx

∫ 1

0
dt φa(x)λt

δ∆(n)

δωa(x)
(5.12)
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where λt acts as follows on a functional X[φa,K0, jaµ]:

λtX[φa,K0, jaµ] = X[tφa,K0, jaµ] . (5.13)

The first term in the r.h.s. of eq. (5.12) accounts for the implicit dependence on φa through

K0 and jaµ. It is of the same form as in the one loop approximation eq. (3.12).

The second term in the r.h.s. of eq. (5.12) is present only from two loops on. It

arises as a consequence of the bilinearity of the local functional equation (2.5). It gives

rise to the explicit dependence of Γ(n) on φa dictated by eq. (5.9). This can be checked

by taking derivatives w.r.t. φa1 , . . . , φam of eq. (5.12) and then setting φ = 0 (derivatives

w.r.t. ζb1 , . . . , ζbn
do not play any role in the following argument). The only contribution

comes from the second term and yields

δm

δφa1 . . . δφam

∫
dDx

∫ 1

0
dt φa(x)λt

δ∆(n)

δωa(x)
=

δm

δφa1 . . . δφam

∫
dDxdDy1 . . . dDym−1

1

(m − 1)!

∫ 1

0
dt tm−1∆

(n)
ωa(x)φb1

(y1)...φbm−1
(ym−1)φa(x)φb1(y1) . . . φbm−1(ym−1)

=
1

m!

∑

σ∈Sm

∆
(n)
ωaσ(1)

φaσ(2)
...φaσ(m)

= Γ
(n)
φa1 ...φam

(5.14)

where in the last line we have used eq. (5.10).

Eq. (5.12) provides the full set of n-th order Green functions in terms of n-th order

ancestor amplitudes and known lower order terms, thus solving the hierarchy.

6. Two-loop examples

In this section we apply the method developed in section 5 at two loop order. The two-loop

inhomogeneous term is

∆(2) = −

∫
dDx

1

2
ωa(x)

δΓ(1)

δK0(x)

δΓ(1)

δφa(x)
. (6.1)

In order to apply eq. (5.12) we need to express the r.h.s. in terms of the variables

{K0, jaµ, φa}. For that purpose we write

∆(2) = −

∫
dDx

1

2
Θ−1

ab ωb

∫
dDy

δK0(y)

δK0(x)

δΓ(1)

δK0(y)
∫

dDz
(δK0(z)

δφa(x)

δ

δK0(z)
+

δjcµ(z)

δφa(x)

δ

δjcµ(z)
+ δD(x − z)

δ

δφa(z)

)
Γ(1) . (6.2)

where the matrix Θ−1
ab is given in eq. (5.4).

Moreover

δK0(y)

δK0(x)
=

v2
D

φ0
δD(y − x) (6.3)
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while by eq. (3.10) one has in the variables {K0, jaµ, φa}

δΓ(1)

δφa(x)
= 0 . (6.4)

Therefore

∆(2) = −

∫
dDx

1

2

v2
D

φ0
Θ−1

ab ωb
δΓ(1)

δK0(x)
∫

dDz
(δK0(z)

δφa(x)

δ

δK0(z)
+

δjcµ(z)

δφa(x)

δ

δjcµ(z)

)
Γ(1) (6.5)

It is useful to introduce two transition functions (encoding the effect of the change of

variables from {K0, Jaµ, φa} to {K0, jaµ, φa}):

Gb(x, z) =
1

2

v2
D

φ0(x)
Θ−1

ab (x)
δK0(z)

δφa(x)
,

Hbc,µ(x, z) =
1

2

v2
D

φ0(x)
Θ−1

ab (x)
δjcµ(z)

δφa(x)
(6.6)

so that eq. (6.3) reads

∆(2) =−

∫
dDx

∫
dDz ωb(x)

δΓ(1)

δK0(x)

(
Gb(x, z)

δ

δK0(z)
+Hbc,µ(x, z)

δ

δjcµ(z)

)
Γ(1) . (6.7)

In the two-loop approximation eq. (5.9) is finally

δΓ(2)

δφb(x)
=

δ∆(2)

δωb(x)

= −

∫
dDz

δΓ(1)

δK0(x)

(
Gb(x, z)

δ

δK0(z)
+ Hbc,µ(x, z)

δ

δjcµ(z)

)
Γ(1) (6.8)

while eq. (5.12) consequently reads

Γ(2)[φa,K0, Jaµ] = A(2)[K0, Jaµ]
∣∣∣
K0→

1
vD

K0,Jaµ→−jaµ

−

∫
dDx

∫ 1

0
dt φb(x)λt

∫
dDz

δΓ(1)

δK0(x)

(
Gb(x, z)

δ

δK0(z)
+ Hbc,µ(x, z)

δ

δjcµ(z)

)
Γ(1) .

(6.9)

The second line encodes the effects of the nonlinearity of the local functional equation at

two loop order.

It should be noticed that, due to the peculiar structure of the dependence of the one-

loop vertex functional on the pions given by eq. (3.10), one finds some special simplifications

at two loop level. In particular the second line of eq. (6.9) does not contribute to the four

point pion Green function in the two loop approximation.

In order to show this property we remark that the expansion of K0 starts with two φ’s

while jaµ starts with one φ. Hence the term with two derivatives w.r.t. K0 in the second

line of eq. (6.9) gives contributions of order O(φ5).
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In order to obtain the contribution to the four point pion function of the term involving

one derivative w.r.t. jcµ in the second line it is sufficient to keep Hbc,µ at order zero:

Hbc;µ(x, z) =
2

vD
δbc∂zµδD(x − z) + O(φ) . (6.10)

This yields

−
2

vD

∫
dDxφb(x)

[ δΓ(1)

δK0(x)

]

φφ
∂µ

[ δΓ(1)

δjbµ(x)

]

φ
(6.11)

where the subscript denotes the order of the projection for the φ’s. Moreover the derivative

[ δΓ(1)

δjbµ(x)

]

φ
(6.12)

receives contributions only from the amplitude Γ
(1)
JaµJbν

[1] through

1

2

∫
dDxdDy Γ

(1)
Jaµ(x)Jbν(y)jaµ(x)jbν(y) = −

1

2

∫
dDxdDy (¤gµν − ∂µ∂ν)jaµ(x)jbν(y)

∫
dDp

4i

m4
D

1

D − 1
eip(x−y)I2(p) (6.13)

where

I2(p) =

∫
dDk

(2π)D
1

k2(k + p)2
. (6.14)

By taking the gradient according to eq. (6.11) one finds zero as a consequence of the

transversality of Γ
(1)
Jaµ(x)Jbν(y). Therefore the second line of eq. (6.9) does not give any

contribution to the four point pion function at two loop level. The contribution from the

first line can be derived according to the methods discussed in section 4. So we get finally

Γ(2)[φφφφ] =
2

v4
D

∫
Γ

(2)
Jaµ(x)Jbν(y)

(
∂µφa(x)(−φ2

c(y)∂νφb(y) + 2φc(y)∂νφc(y)φb(y))

+εapqεbrs∂µφp(x)φq(x)∂νφr(y)φs(y)
)

+
4

v4
D

∫
Γ

(2)
Jaµ(x)Jbν(y)Jcρ(z)εapq∂µφp(x)φq(x)∂νφb(y)∂ρφc(z)

+
2

3v4
D

∫
Γ

(2)
Jaµ(x)Jbν(y)Jcρ(z)Jdσ(w)∂µφa(x)∂νφb(y)∂ρφc(z)∂σφd(w)

+
2

v3
D

∫
Γ

(2)
Jaµ(x)Jbν(y)K0(z)∂µφa(x)∂νφb(y)(φc¤φc)(z)

+
1

2v2
D

∫
Γ

(2)
K0(x)K0(y)(φa¤φa)(x)(φb¤φb)(y) . (6.15)

This formula exhibits a functional dependence of Γ
(2)
φa1φa2φa3φa4

on the ancestor amplitudes

as in the one loop approximation (see eq. (4.19)). This is a rather surprising result which

holds as a consequence of the transversality of the one-loop JJ ancestor amplitude.
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7. Hierarchy and Finite Renormalizations

From the results of sections 3 and 5 it is clear that for any solution of the local functional

equation (2.5) the knowledge of the ancestor amplitudes order by order in the loop expan-

sion completely determines the dependence on the pion fields. One important consequence

of this result is that it has been obtained without relying on the specific subtraction pro-

cedure. In particular if we want to perform any subtraction in order to define the theory

in D = 4, it is sufficient to operate on the ancestor amplitudes. The subtractions on the

amplitudes involving any number of pions are induced by the integration of the functional

equation which has been developed in the previous sections.

In this section we exploit this property in order to shed light on the finite renormal-

izations allowed from a mathematical point of view by the local symmetry and the weak

power-counting theorem.

For that purpose we remark that a sufficient condition for the fulfillment of the local

functional equation (2.5) is conjectured to be (in the presence of a symmetric regularization

like Dimensional Regularization [3]) the validity of the same functional equation (2.5) for

the functional

Γ̂ = Γ(0) +

∞∑

k=1

Γ̂(k) (7.1)

where Γ(0) is the classical action in eq. (2.3) (giving rise to the tree-level Feynman rules)

while Γ̂(k) collects the k-th order counterterms. From the mathematical point of view

the latter may contain k-th order finite renormalizations compatible with the symmetry

properties and the weak power-counting bounds [2]. This conjecture is supported by formal

arguments [18] and by some explicit two-loop examples [3].

We will now prove that the ancestor amplitudes of Γ̂ can be obtained from the tree-

level ancestor amplitudes through a suitable redefinition of the classical sources Jaµ and

K0:

Jaµ → Jaµ + A1,aµ(J) + A2,aµ(J) + . . . ,

K0 → K0(1 + B1(K0, J) + B2(K0, J) + . . .) (7.2)

where Aj,aµ, Bj are of order ~
j . Aj,aµ does not depend on K0. We also set A0,aµ = Jaµ, B0 =

1.

First we notice that by using integration by parts it is always possible to decompose

in a unique way an integrated local functional
∫

dDxX(J,K0) according to
∫

dDxX(J,K0) =

∫
dDx

(
JaµP

µ
a [X] + K0Q[X]

)
(7.3)

where Pµ
a [X] is the result of the projection of X into a local function of J and its derivatives

while Q[X] includes also local dependence on K0 and its derivatives. In order to determine

the unknown functions Aj,aµ and Bj in eq. (7.2) we perform the substitution (7.2) into

Γ(0)[0, Jaµ,K0] =

∫
dDx

(v2
D

8
J2 + vDK0

)

– 14 –



J
H
E
P
0
3
(
2
0
0
7
)
0
6
5

→
∞∑

l=0

∫
dDx

(v2
D

8

l∑

j=0

Aj,aµA
µ
l−j,a + vDK0Bl

)
(7.4)

and then compare the second line of the above equation with the ancestor counterterms

Γ̂(l)[0,K0, Jaµ] ≡

∫
dDx L̂l(J,K0) .

This gives

∫
dDx L̂l =

v2
D

8

∫
dDx

l∑

j=0

Aj,aµA
µ
l−j,a +

∫
dDx vDK0Bl (7.5)

=

∫
dDx

(v2
D

4
JaµA

µ
l,a +

v2
D

8

l−1∑

j=1

Aj,aµA
µ
l−j,a + vDK0Bl

)
, l = 1, 2, 3, . . .

and hence we derive the recursive solution

B0 = 1 , Bl =
1

vD
Q[L̂l] ,

A0,aµ = Jaµ ,

Al,aµ =
4

v2
D

Paµ[L̂l] −
1

2
Paµ

[ l−1∑

j=1

Aj,bνA
ν
l−j,b

]
, l = 1, 2, 3, . . . (7.6)

This result states that all possible finite renormalizations in Γ̂(k), k > 1, compatible with the

local symmetry and the weak power-counting, can in fact be interpreted as a redefinition

of the sources Jaµ and K0 by finite quantum corrections. The latter correspond to the

ambiguities allowed in the effective field theory approach discussed in [18].

8. Conclusions

The requirement of the invariance of the group Haar measure under local left multiplication

can be implemented by a local functional equation for the 1-PI vertex functional of the

nonlinear sigma model. This equation can be preserved by the subtraction procedure and

completely fixes the dependence of the vertex functional on the pion fields in terms of the

ancestor amplitudes (i.e. amplitudes only involving the flat connection and the nonlinear

sigma model constraint).

Very remarkably the recursive solution can be written in a very compact form in terms

of invariant variables (inducing an implicit dependence of the vertex functional on the

quantized field) plus (at order n ≥ 2) a contribution yielding an explicit dependence on φa.

The latter is fixed by lower order terms (see eq. (5.12)) and does not affect the n-th loop

ancestor amplitudes. This solution provides the full dependence of the 1-PI symmetric

amplitudes on the pion fields.

From a technical point of view the method which has been developed in order to

integrate the local functional equation extends the cohomological techniques originally

developed in the context of gauge theories. In particular it deals with the full Green
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functions of the theory (no locality restrictions) and it solves explicitly the inhomogeneous

equation (arising from the loop expansion of the bilinear local functional equation) in the

absence of multiplicative renormalization (as it happens for the subtraction procedure of

the nonlinear sigma model).

The integration of the local functional equation at higher orders in the loop expansion

allows to treat a new class of problems which could not be addressed by the knowledge of

the solutions of the linearized functional equation only.

Among them we think that two issues are worthwhile to be pointed out. The first

one is that our method allows the determination of all pion amplitudes at higher orders in

Chiral Perturbation Theory.

The second one is the possibility to investigate the use of the techniques discussed in

this paper in order to set up a consistent framework for the study of the structure of the

higher order divergences within the program of the quantization of the Stückelberg model

for non-abelian massive gauge bosons.
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A. Consistency condition

In this appendix we verify eq. (5.7) as a consequence of the recursive validity of the func-

tional equation at lower orders. The technique is a variant of the general proof of the

consistency condition in the Batalin-Vilkovisky (BV) formalism [17]. One should notice

that in the present case the introduction of the antifield J∗
aµ for the background source Jaµ

is forbidden (since this would lead to an empty cohomology [19]). Therefore one cannot

use the standard BV bracket.

The local functional equation at order n in the loop expansion reads

sΓ(n) = −
1

2

n−1∑

j=1

∫
dDxωa

δΓ(j)

δK0

δΓ(n−j)

δφa
, (A.1)

which is useful to rewrite in the more symmetric form

sΓ(n) = −
1

2

n−1∑

j=1

〈Γ(j),Γ(n−j)〉 . (A.2)

In the above equation we have adopted the notation

〈X,Y 〉 =

∫
dDx

1

2
ωa

( δX

δK0

δY

δφa
+

δY

δK0

δX

δφa

)
. (A.3)
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The following properties hold for 〈X,Y 〉:

〈X,Y 〉 = 〈Y,X〉 ,

s〈X,Y 〉 = −〈sX, Y 〉 − 〈X, sY 〉 X,Y bosonic . (A.4)

We denote by ∆(n) the r.h.s. of eq. (A.2), i.e. we set

∆(n) = −
1

2

n−1∑

j=1

〈Γ(j),Γ(n−j)〉 . (A.5)

If a solution to eq. (A.2) exists, by the nilpotency of s the following consistency condition

has to be verified:

s∆(n) = 0 . (A.6)

Let us verify that this is indeed the case under the recursive assumption that the master

equation has been fulfilled up to order n − 1.

By using eq. (A.4) we get

s∆(n) = s
(
−

1

2

n−1∑

j=1

〈Γ(j),Γ(n−j)〉
)

= +
1

2

n−1∑

j=1

(
〈sΓ(j),Γ(n−j)〉 + 〈Γ(j), sΓ(n−j)〉

)

= +
1

2

n−1∑

j=1

(
〈sΓ(j),Γ(n−j)〉 + 〈sΓ(n−j),Γ(j)〉

)

=

n−1∑

j=1

〈sΓ(j),Γ(n−j)〉 (A.7)

Now we use the recursive assumption that

sΓ(j) = −
1

2

j−1∑

k=1

〈Γ(k),Γ(j−k)〉 (A.8)

so that

s∆(n) = −
1

2

n−1∑

j=1

j−1∑

k=1

〈〈Γ(k),Γ(j−k)〉,Γ(n−j)〉

= −
1

2
·
1

3

n−1∑

j=1

j−1∑

k=1

(
〈〈Γ(k),Γ(j−k)〉,Γ(n−j)〉 + 〈〈Γ(j−k),Γ(n−j)〉,Γ(k)〉

+ 〈〈Γ(n−j),Γ(k)〉,Γ(j−k)〉
)

. (A.9)

It turns out that the symmetrized bracket enjoys the following Jacobi identity (X,Y,Z are

assumed to be bosonic):

〈〈X,Y 〉, Z〉 + 〈〈Z,X〉, Y 〉 + 〈〈Y,Z〉,X〉 = 0 . (A.10)
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The proof of the above equation is provided in the next subsection. By using eq. (A.10)

into eq. (A.9) we finally get

s∆(n) = 0 . (A.11)

A.1 Proof of the Jacobi identity for the symmetrized bracket

We assume X,Y,Z to be bosonic. We write explicitly 〈〈X,Y 〉, Z〉:

〈〈X,Y 〉, Z〉 =

∫
dDx

1

2
ωa(x)

δ

δK0(x)
(〈X,Y 〉)

δZ

δφa(x)

+

∫
dDx

1

2
ωa(x)

δZ

δK0(x)

δ

δφa(x)
(〈X,Y 〉)

=

∫
dDx

1

2
ωa(x)

δ

δK0(x)

[ ∫
dDy

1

2
ωb(y)

δX

δK0(y)

δY

δφb(y)

+

∫
dDy

1

2
ωb(y)

δY

δK0(y)

δX

δφb(y)

] δZ

δφa(x)

+

∫
dDx

1

2
ωa(x)

δZ

δK0(x)

δ

δφa(x)

[ ∫
dDy

1

2
ωb(y)

δX

δK0(y)

δY

δφb(y)

+

∫
dDy

1

2
ωb(y)

δY

δK0(y)

δX

δφb(y)

]
(A.12)

We notice that the following terms in the r.h.s. of eq. (A.12)
∫

dDxdDy
1

2
ωa(x)

1

2
ωb(y)

δZ

δK0(x)

δX

δK0(y)

δ2Y

δφa(x)δφb(y)
,

∫
dDxdDy

1

2
ωa(x)

1

2
ωb(y)

δZ

δK0(x)

δY

δK0(y)

δ2X

δφa(x)δφb(y)
(A.13)

are zero since ωa(x) and ωb(y) are anticommuting.

We make use of eq. (A.12) in order to write the sum 〈〈X,Y 〉, Z〉+ cyclic. We organize

the terms according to the number of derivatives w.r.t K0 acting on a single functional.

We obtain

〈〈X,Y 〉, Z〉 + cyclic =

∫
dDx

∫
dDy

1

2
ωa(x)

1

2
ωb(y)

×
[ δ2X

δK0(x)δK0(y)

( δY

δφb(y)

δZ

δφa(x)
+

δZ

δφb(y)

δY

δφa(x)

)

+
δ2Y

δK0(x)δK0(y)

( δZ

δφb(y)

δX

δφa(x)
+

δX

δφb(y)

δZ

δφa(x)

)

+
δ2Z

δK0(x)δK0(y)

( δX

δφb(y)

δY

δφa(x)
+

δY

δφb(y)

δX

δφa(x)

)]

+

∫
dDx

∫
dDy

1

2
ωa(x)

1

2
ωb(y)

×
[ δX

δK0(y)

( δ2Y

δK0(x)δφb(y)

δZ

δφa(x)
+

δ2Z

δK0(x)δφb(y)

δY

δφa(x)

)

+
δX

δK0(x)

( δ2Y

δφa(x)δK0(y)

δZ

δφb(y)
+

δ2Z

δφa(x)δK0(y)

δY

δφb(y)

)

+ cyclic
]

(A.14)
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The terms in the first block between square brackets in the above equation vanish by

symmetry once the anticommutativity of ωa(x), ωb(y) is taken into account.

The second block requires some manipulations. If one exchanges y ↔ x and a ↔ b in

the second line of the second block, the latter becomes

+

∫
dDx

∫
dDy

1

2
ωa(x)

1

2
ωb(y)

×
δX

δK0(y)

( δ2Y

δK0(x)δφb(y)

δZ

δφa(x)
+

δ2Z

δK0(x)δφb(y)

δY

δφa(x)

)

+

∫
dDx

∫
dDy

1

2
ωb(y)

1

2
ωa(x)

×
δX

δK0(y)

( δ2Y

δK0(x)δφb(y)

δZ

δφa(x)
+

δ2Z

δK0(x)δφb(y)

δY

δφa(x)

)

+ cyclic (A.15)

The above expression is zero since ωa(x), ωb(y) anticommute.

Therefore we establish the Jacobi identity for the symmetrized bracket in the form

〈〈X,Y 〉, Z〉 + 〈〈Z,X〉, Y 〉 + 〈〈Y,Z〉,X〉 = 0 (A.16)

with X,Y,Z bosonic.

B. Integrability condition

In this appendix we check that eq. (5.11) holds as a consequence of eq. (5.7). Eq. (5.7)

reads in the variables {K0, jaµ, φa, ωa}

∫
dDxωa(x)

δ∆(n)

δφa(x)
= 0 . (B.1)

By differentiating the above equation w.r.t. ωa(x), ωb(y) and by setting ω = 0 we get

δ2∆(n)

δωb(y)δφa(x)
=

δ2∆(n)

δωa(x)δφb(y)
. (B.2)

Let us now consider the r.h.s. of eq. (5.11). For each permutation σ ∈ Sm there exists a

unique integer 1 ≤ K ≤ m such that σ(K) = 1. Therefore (we drop here the dependence

on ζ1, . . . , ζn since the latter does not play any role in the following argument)

1

m!

∑

σ∈Sm

∆
(n)
ωaσ(1)

φaσ(2)
...φaσ(m)

=
1

m!

∑

σ∈Sm−1[2,...,m]

∆
(n)
ωa1φaσ(2)

...φaσ(m)

+
1

m!

m∑

K=2

∑

σ∈Sm−1[1,2,..., bK,...,m]

∆
(n)

ωaσ(1)
φaσ(K)

φaσ(2)
...bφaσ(K)

...φaσ(m)

. (B.3)

In the above equation a hat over a variable denotes omission of the latter from the rele-

vant list and Sm−1[a, b, . . . , c] denotes the group of permutations over the m − 1 elements

{a, b, . . . , c}.
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We now use eq. (B.2) in the second line of eq. (B.3) as well as the fact that σ(K) = 1

and we get

1

m!

∑

σ∈Sm

∆
(n)
ωaσ(1)

φaσ(2)
...φaσ(m)

=
1

m!

∑

σ∈Sm−1[2,...,m]

∆
(n)
ωa1φaσ(2)

...φaσ(m)
(B.4)

+
1

m!

m∑

K=2

∑

σ∈Sm−1[1,2,..., bK,...,m]

∆
(n)

ωa1φaσ(1)
φaσ(2)

...bφaσ(K)
...φaσ(m)

.

By the Bose statistics of the φ’s we also get

1

m!

∑

σ∈Sm

∆
(n)
ωaσ(1)

φaσ(2)
...φaσ(m)

=
1

m
∆

(n)
ωa1φa2 ...φam

+
m − 1

m
∆

(n)
ωa1φa2φa3 ......φam

= ∆
(n)
ωa1φa2 ...φam

, (B.5)

which proves eq. (5.11).

A comment is in order here. It is a well-known fact in cohomological algebra [14 –

16] that if a local functional with ghost number one satisfies the consistency condition

in eq. (5.7) (i.e. it is BRST closed) and the BRST differential s has been trivialized by

reduction to a doublet pair

sφa = ωa, sωa = 0

then that functional is also BRST-exact.

The present analysis generalizes this result to the case of arbitrary functionals, the

locality property being nowhere used in the above construction.

C. One-loop invariants

We report here the invariants parameterizing the one-loop divergences of the nonlinear

sigma model in D = 4 [2]. The background connection is denoted by Jaµ.

I1 =

∫
dDx

[
Dµ(F − J)ν

]

a

[
Dµ(F − J)ν

]

a
,

I2 =

∫
dDx

[
Dµ(F − J)µ

]

a

[
Dν(F − J)ν

]

a
,

I3 =

∫
dDx εabc

[
Dµ(F − J)ν

]

a

(
F

µ
b − J

µ
b

)(
F ν

c − Jν
c

)
,

I4 =

∫
dDx

(m2
DK0

φ0
− φa

δS0

δφa

)2
,

I5 =

∫
dDx

(m2
DK0

φ0
− φa

δS0

δφa

)(
F

µ
b − J

µ
b

)2
,

I6 =

∫
dDx

(
Fµ

a − Jµ
a

)2(
F ν

b − Jν
b

)2
,

I7 =

∫
dDx

(
Fµ

a − Jµ
a

)(
F ν

a − Jν
a

)(
Fbµ − Jbµ

)(
Fbν − Jbν

)
. (C.1)

In the above equation Dµ[F ] stands for the covariant derivative w.r.t. Faµ

Dµ[F ]ab = δab∂µ + εacbFcµ . (C.2)

– 20 –



J
H
E
P
0
3
(
2
0
0
7
)
0
6
5

References

[1] R. Ferrari, Endowing the nonlinear sigma model with a flat connection structure: a way to

renormalization, JHEP 08 (2005) 048 [hep-th/0504023].

[2] R. Ferrari and A. Quadri, A weak power-counting theorem for the renormalization of the

non-linear sigma model in four dimensions, Int. J. Theor. Phys. 45 (2006) 2497

[hep-th/0506220].

[3] R. Ferrari and A. Quadri, Renormalization of the non-linear sigma model in four dimensions:

a two-loop example, JHEP 01 (2006) 003 [hep-th/0511032].

[4] J. Gasser and H. Leutwyler, Chiral perturbation theory to one loop, Ann. Phys. (NY) 158

(1984) 142.

[5] R. Ferrari and P.A. Grassi, Constructive algebraic renormalization of the abelian Higgs-Kibble

model, Phys. Rev. D 60 (1999) 065010 [hep-th/9807191].

[6] R. Ferrari, P.A. Grassi and A. Quadri, Direct algebraic restoration of Slavnov-Taylor

identities in the abelian Higgs-Kibble model, Phys. Lett. B 472 (2000) 346 [hep-th/9905192].

[7] A. Quadri, Slavnov-Taylor parameterization for the quantum restoration of BRST

symmetries in anomaly-free gauge theories, JHEP 04 (2003) 017 [hep-th/0301211].

[8] A. Quadri, Higher-order non-symmetric counterterms in pure Yang-Mills theory, J. Phys. G

30 (2004) 677 [hep-th/0309133].

[9] A. Quadri, Slavnov-taylor parameterization of Yang-Mills theory with massive fermions in the

presence of singlet axial-vector currents, JHEP 06 (2005) 068 [hep-th/0504076].

[10] J. Bijnens, G. Colangelo and G. Ecker, Renormalization of chiral perturbation theory to order

p6, Ann. Phys. (NY) 280 (2000) 100 [hep-ph/9907333].

[11] E.C.G. Stückelberg, Die Wechselwirkungs Kraefte in der Elektrodynamik und in der

Feldtheorie der Kernkraefte (II) [The interaction forces in electrodynamics and in the field

theory of nuclear forces (II)], Helv. Phys. Acta 11 (1938) 299.

[12] H. Ruegg and M. Ruiz-Altaba, The Stueckelberg field, Int. J. Mod. Phys. A 19 (2004) 3265

[hep-th/0304245].

[13] R. Ferrari and A. Quadri, Physical unitarity for massive non-abelian gauge theories in the

Landau gauge: Stueckelberg and Higgs, JHEP 11 (2004) 019 [hep-th/0408168].

[14] O. Piguet and S.P. Sorella, Algebraic renormalization: perturbative renormalization,

symmetries and anomalies, Lect. Notes Phys. M28 (1995) 1.

[15] G. Barnich, F. Brandt and M. Henneaux, Local BRST cohomology in gauge theories, Phys.

Rept. 338 (2000) 439 [hep-th/0002245].

[16] A. Quadri, Algebraic properties of BRST coupled doublets, JHEP 05 (2002) 051

[hep-th/0201122].

[17] J. Gomis, J. Paris and S. Samuel, Antibracket, antifields and gauge theory quantization, Phys.

Rept. 259 (1995) 1 [hep-th/9412228].

[18] D. Bettinelli, R. Ferrari and A. Quadri, A comment on the renormalization of the nonlinear

sigma model, hep-th/0701197.

[19] M. Henneaux and A. Wilch, Local BRST cohomology of the gauged principal non-linear

sigma model, Phys. Rev. D 58 (1998) 025017 [hep-th/9802118].

– 21 –

http://jhep.sissa.it/stdsearch?paper=08%282005%29048
http://arxiv.org/abs/hep-th/0504023
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IJTPB%2CB45%2C2497
http://arxiv.org/abs/hep-th/0506220
http://jhep.sissa.it/stdsearch?paper=01%282006%29003
http://arxiv.org/abs/hep-th/0511032
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APNYA%2C158%2C142
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APNYA%2C158%2C142
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD60%2C065010
http://arxiv.org/abs/hep-th/9807191
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB472%2C346
http://arxiv.org/abs/hep-th/9905192
http://jhep.sissa.it/stdsearch?paper=04%282003%29017
http://arxiv.org/abs/hep-th/0301211
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JPHGB%2CG30%2C677
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JPHGB%2CG30%2C677
http://arxiv.org/abs/hep-th/0309133
http://jhep.sissa.it/stdsearch?paper=06%282005%29068
http://arxiv.org/abs/hep-th/0504076
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APNYA%2C280%2C100
http://arxiv.org/abs/hep-ph/9907333
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IMPAE%2CA19%2C3265
http://arxiv.org/abs/hep-th/0304245
http://jhep.sissa.it/stdsearch?paper=11%282004%29019
http://arxiv.org/abs/hep-th/0408168
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C338%2C439
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C338%2C439
http://arxiv.org/abs/hep-th/0002245
http://jhep.sissa.it/stdsearch?paper=05%282002%29051
http://arxiv.org/abs/hep-th/0201122
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C259%2C1
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C259%2C1
http://arxiv.org/abs/hep-th/9412228
http://arxiv.org/abs/hep-th/0701197
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD58%2C025017
http://arxiv.org/abs/hep-th/9802118

